Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Rep Med ; 4(11): 101245, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37913775

RESUMO

Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Lipossomos , Células Th1 , Emulsões , Adjuvantes Imunológicos/farmacologia , Malária/prevenção & controle
2.
Front Immunol ; 14: 1188605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409116

RESUMO

Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Nucleocapsídeo
4.
NPJ Vaccines ; 8(1): 52, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029167

RESUMO

The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.

5.
Pharmacol Res ; 189: 106699, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796463

RESUMO

Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.


Assuntos
COVID-19 , Vacinas , Humanos , Adjuvantes de Vacinas , Pandemias , Vacinação/métodos , Vacinas de Subunidades , Adjuvantes Imunológicos
6.
J Hepatol ; 78(4): 717-730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634821

RESUMO

BACKGROUND & AIMS: We recently developed a heterologous therapeutic vaccination scheme (TherVacB) comprising a particulate protein prime followed by a modified vaccinia-virus Ankara (MVA)-vector boost for the treatment of HBV. However, the key determinants required to overcome HBV-specific immune tolerance remain unclear. Herein, we aimed to study new combination adjuvants and unravel factors that are essential for the antiviral efficacy of TherVacB. METHODS: Recombinant hepatitis B surface and core antigen (HBsAg and HBcAg) particles were formulated with different liposome- or oil-in-water emulsion-based combination adjuvants containing saponin QS21 and monophosphoryl lipid A; these formulations were compared to STING-agonist c-di-AMP and conventional aluminium hydroxide formulations. Immunogenicity and the antiviral effects of protein antigen formulations and the MVA-vector boost within TherVacB were evaluated in adeno-associated virus-HBV-infected and HBV-transgenic mice. RESULTS: Combination adjuvant formulations preserved HBsAg and HBcAg integrity for ≥12 weeks, promoted human and mouse dendritic cell activation and, within TherVacB, elicited robust HBV-specific antibody and T-cell responses in wild-type and HBV-carrier mice. Combination adjuvants that prime a balanced HBV-specific type 1 and 2 T helper response induced high-titer anti-HBs antibodies, cytotoxic T-cell responses and long-term control of HBV. In the absence of an MVA-vector boost or following selective CD8 T-cell depletion, HBsAg still declined (mediated mainly by anti-HBs antibodies) but HBV replication was not controlled. Selective CD4 T-cell depletion during the priming phase of TherVacB resulted in a complete loss of vaccine-induced immune responses and its therapeutic antiviral effect in mice. CONCLUSIONS: Our results identify CD4 T-cell activation during the priming phase of TherVacB as a key determinant of HBV-specific antibody and CD8 T-cell responses. IMPACT AND IMPLICATIONS: Therapeutic vaccination is a potentially curative treatment option for chronic hepatitis B. However, it remains unclear which factors are essential for breaking immune tolerance in HBV carriers and determining successful outcomes. Our study provides the first direct evidence that efficient priming of HBV-specific CD4 T cells determines the success of therapeutic hepatitis B vaccination in two preclinical HBV-carrier mouse models. Applying an optimal formulation of HBV antigens that activates CD4 and CD8 T cells during prime immunization provided the foundation for an antiviral effect of therapeutic vaccination, while depletion of CD4 T cells led to a complete loss of vaccine-induced antiviral efficacy. Boosting CD8 T cells was important to finally control HBV in these mouse models. Our findings provide important insights into the rational design of therapeutic vaccines for the cure of chronic hepatitis B.


Assuntos
Vacinas contra Hepatite B , Hepatite B Crônica , Camundongos , Humanos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Linfócitos T CD4-Positivos , Imunização , Vacinação/métodos , Anticorpos Anti-Hepatite B , Linfócitos T CD8-Positivos , Camundongos Transgênicos , Adjuvantes Imunológicos , Antivirais
7.
F1000Res ; 12: 1401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298529

RESUMO

Background: Research infrastructures are facilities or resources that have proven fundamental for supporting scientific research and innovation. However, they are also known to be very expensive in their establishment, operation and maintenance. As by far the biggest share of these costs is always borne by public funders, there is a strong interest and indeed a necessity to develop alternative business models for such infrastructures that allow them to function in a more sustainable manner that is less dependent on public financing. Methods: In this article, we describe a feasibility study we have undertaken to develop a potentially sustainable business model for a vaccine research and development (R&D) infrastructure. The model we have developed integrates two different types of business models that would provide the infrastructure with two different types of revenue streams which would facilitate its establishment and would be a measure of risk reduction. For the business model we are proposing, we have undertaken an ex ante impact assessment that estimates the expected impact for a vaccine R&D infrastructure based on the proposed models along three different dimensions: health, society and economy. Results: Our impact assessment demonstrates that such a vaccine R&D infrastructure could achieve a very significant socio-economic impact, and so its establishment is therefore considered worthwhile pursuing. Conclusions: The business model we have developed, the impact assessment and the overall process we have followed might also be of interest to other research infrastructure initiatives in the biomedical field.


Assuntos
Pesquisa Biomédica , Vacinas , Comércio , Fatores Socioeconômicos
8.
Front Immunol ; 13: 976968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119058

RESUMO

Various chemical adjuvants are available to augment immune responses to non-replicative, subunit vaccines. Optimized adjuvant selection can ensure that vaccine-induced immune responses protect against the diversity of pathogen-associated infection routes, mechanisms of infectious spread, and pathways of immune evasion. In this study, we compare the immune response of mice to a subunit vaccine of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) spike protein, stabilized in its prefusion conformation by a proprietary molecular clamp (MERS SClamp) alone or formulated with one of six adjuvants: either (i) aluminium hydroxide, (ii) SWE, a squalene-in-water emulsion, (iii) SQ, a squalene-in-water emulsion containing QS21 saponin, (iv) SMQ, a squalene-in-water emulsion containing QS21 and a synthetic toll-like receptor 4 (TLR4) agonist 3D-6-acyl Phosphorylated HexaAcyl Disaccharide (3D6AP); (v) LQ, neutral liposomes containing cholesterol, 1.2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and QS21, (vi) or LMQ, neutral liposomes containing cholesterol, DOPC, QS21, and 3D6AP. All adjuvanted formulations induced elevated antibody titers which where greatest for QS21-containing formulations. These had elevated neutralization capacity and induced higher frequencies of IFNƔ and IL-2-producing CD4+ and CD8+ T cells. Additionally, LMQ-containing formulations skewed the antibody response towards IgG2b/c isotypes, allowing for antibody-dependent cellular cytotoxicity. This study highlights the utility of side-by-side adjuvant comparisons in vaccine development.


Assuntos
Saponinas , Receptor 4 Toll-Like , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Hidróxido de Alumínio , Animais , Linfócitos T CD8-Positivos , Dissacarídeos , Emulsões , Imunoglobulina G , Interleucina-2 , Lipossomos , Camundongos , Fosforilcolina , Saponinas/farmacologia , Glicoproteína da Espícula de Coronavírus , Esqualeno , Vacinas de Subunidades , Água
9.
Front Cell Infect Microbiol ; 12: 918629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782116

RESUMO

The leptospirosis burden on humans, especially in high-risk occupational groups and livestock, leads to public health and economic problems. Leptospirosis subunit vaccines have been under development and require further improvement to provide complete protection. Adjuvants can be used to enhance the amplitude, quality, and durability of immune responses. Previously, we demonstrated that LMQ adjuvant (neutral liposomes containing monophosphoryl lipid A (MPL) and Quillaja saponaria derived QS21 saponin) promoted protective efficacy of LigAc vaccine against Leptospira challenge. To promote immunogenicity and protective efficacy of the subunit vaccines, three alternative adjuvants based on neutral liposomes or squalene-in-water emulsion were evaluated in this study. LQ and LQuil adjuvants combined the neutral liposomes with the QS21 saponin or Quillaja saponaria derived QuilA® saponin, respectively. SQuil adjuvant combined a squalene-in-water emulsion with the QuilA® saponin. The immunogenicity and protective efficacy of LigAc (20 µg) formulated with the candidate adjuvants were conducted in golden Syrian hamsters. Hamsters were vaccinated three times at a 2-week interval, followed by a homologous challenge of L. interrogans serovar Pomona. The results showed that LigAc combined with LQ, LQuil, or SQuil adjuvants conferred substantial antibody responses and protective efficacy (survival rate, pathological change, and Leptospira renal colonization) comparable to LMQ adjuvant. The LigAc+LQ formulation conferred 62.5% survival but was not significantly different from LigAc+LMQ, LigAc+LQuil, and LigAc+SQuil formulations (50% survival). This study highlights the potential of saponin-containing adjuvants LMQ, LQ, LQuil, and SQuil for both human and animal leptospirosis vaccines.


Assuntos
Leptospira , Leptospirose , Saponinas , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Cricetinae , Emulsões , Leptospirose/prevenção & controle , Lipossomos , Esqualeno , Proteína Estafilocócica A , Vacinas de Subunidades
10.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34493582

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Engenharia de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais , Sítios de Ligação , COVID-19/virologia , Vacinas contra COVID-19/economia , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Saccharomycetales/metabolismo , Vacinas de Subunidades
11.
Vaccines (Basel) ; 9(5)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063131

RESUMO

Adequate global vaccine coverage during an influenza pandemic is essential to mitigate morbidity, mortality, and economic impact. Vaccine development and production needs to be sufficient to meet a vast global demand, requiring international cooperation and local vaccine production capacity, especially in resource-constrained countries. The use of adjuvants is one approach to augment the number of available vaccine doses and to overcome potential vaccine shortages. Appropriately selected adjuvant technologies can decrease the amount of vaccine antigen required per dose, may broaden or lengthen the conferred protection against disease, and may even allow protective single-dose vaccination. Here we describe a technology transfer collaboration between Switzerland and Indonesia that led to the establishment of a vaccine formulation platform in Surabaya which involved the transfer of equipment and expertise to enable research and development of adjuvanted vaccine formulations and delivery systems. This new Indonesian capability aims to facilitate local and regional access to know-how relating to adjuvanted vaccine formulations, thus promoting their application to local vaccine developers. In this review, we aim to share the "lessons learned" from this project to both support and inspire future scientific collaborations of a similar nature.

12.
bioRxiv ; 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33688647

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

13.
Vaccines (Basel) ; 9(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562114

RESUMO

Capsid-like particle (CLP) displays can be used to enhance the immunogenicity of vaccine antigens, but a better understanding of how CLP vaccines are best formulated and delivered is needed. This study compared the humoral immune responses in mice elicited against two different vaccine antigens (a bacterial protein and a viral peptide) delivered on an AP205 CLP platform using six different adjuvant formulations. In comparison to antibody responses obtained after immunization with the unadjuvanted CLP vaccine, three of the adjuvant systems (neutral liposomes/monophosphoryl lipid A/quillaja saponaria 21, squalene-in-water emulsion, and monophosphoryl lipid A) caused significantly increased antibody levels, whereas formulation with the three other adjuvants (aluminum hydroxide, cationic liposomes, and cationic microparticles) resulted in similar or even decreased antibody responses. When delivering the soluble bacterial protein in a squalene-in-water emulsion, 4-log lower IgG levels were obtained compared to when the protein was delivered on CLPs without the adjuvant. The AP205 CLP platform promoted induction of both IgG1 and IgG2 subclasses, which could be skewed towards a higher production of IgG1 (aluminum hydroxide). Compared to other routes, intramuscular administration elicited the highest IgG levels. These results indicate that the effect of the external adjuvant does not always synergize with the adjuvant effect of the CLP display, which underscores the need for empirical testing of different extrinsic adjuvants.

14.
Vaccines (Basel) ; 8(3)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882903

RESUMO

Leptospirosis vaccines with higher potency and reduced adverse effects are needed for human use. The carboxyl terminal domain of leptospiral immunoglobulin like protein A (LigAc) is currently the most promising candidate antigen for leptospirosis subunit vaccine. However, LigAc-based vaccines were unable to confer sterilizing immunity against Leptospira infection in animal models. Several factors including antigen properties, adjuvant, delivery system, and administration route need optimization to maximize vaccine efficacy. Our previous report demonstrated protective effects of the recombinant LigAc (rLigAc) formulated with liposome-based adjuvant, called LMQ (neutral liposome combined with monophosphoryl lipid A and Quillaja saponaria fraction 21) in hamsters. This study aimed to evaluate the impact of two commonly used administration routes, intramuscular (IM) and subcutaneous (SC), on immunogenicity and protective efficacy of rLigAc-LMQ administrated three times at 2-week interval. Two IM vaccinations triggered significantly higher levels of total anti-rLigAc IgG than two SC injections. However, comparable IgG titers and IgG2/IgG1 ratio was observed for both routes after the third immunization. The route of vaccine administration did not influence the survival rate (60%) and renal colonization against lethal Leptospira challenge. Importantly, the kidneys of IM group showed no pathological lesions while the SC group showed mild damage. In conclusion, IM vaccination with rLigAc-LMQ not only elicited faster antibody production but also protected from kidney damage following leptospiral infection better than SC immunization. However, both tested routes did not influence protective efficacy in terms of survival rate and the level of renal colonization.

15.
NPJ Vaccines ; 5(1): 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411401

RESUMO

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

16.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156809

RESUMO

Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.IMPORTANCE Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens.


Assuntos
Imunidade Celular , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Anticorpos Antibacterianos/imunologia , Citocinas/imunologia , Feminino , Imunização , Imunoglobulina G/imunologia , Interferon gama/imunologia , Masculino , Camundongos , Proteínas Opsonizantes/imunologia , Vacinas Estreptocócicas/administração & dosagem
17.
NPJ Vaccines, v. 5, 38, mai. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3044

RESUMO

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

18.
NPJ Vaccines ; 5: 38, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17683

RESUMO

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

19.
Vet Res ; 50(1): 91, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703726

RESUMO

New vaccine formulations that include novel strains of Mycoplasma hyopneumoniae and innovative adjuvants designed to induce cellular immunity could improve vaccine efficacy against this pathogen. The aim of this experimental study was to assess the efficacy of three experimental bacterin formulations based on M. hyopneumoniae field strain F7.2C which were able to induce cellular immunity. The formulations included a cationic liposome formulation with the Mincle receptor ligand trehalose 6,6-dibehenate (Lipo_DDA:TDB), a squalene-in-water emulsion with Toll-like receptor (TLR) ligands targeting TLR1/2, TLR7/8 and TLR9 (SWE_TLR), and a poly(lactic-co-glycolic acid) micro-particle formulation with the same TLR ligands (PLGA_TLR). Four groups of 12 M. hyopneumoniae-free piglets were primo- (day (D) 0; 39 days of age) and booster vaccinated (D14) intramuscularly with either one of the three experimental bacterin formulations or PBS. The pigs were endotracheally inoculated with a highly and low virulent M. hyopneumoniae strain on D28 and D29, respectively, and euthanized on D56. The main efficacy parameters were: respiratory disease score (RDS; daily), macroscopic lung lesion score (D56) and log copies M. hyopneumoniae DNA determined with qPCR on bronchoalveolar lavage (BAL) fluid (D42, D56). All formulations were able to reduce clinical symptoms, lung lesions and the M. hyopneumoniae DNA load in the lung, with formulation SWE_TLR being the most effective (RDSD28-D56 -61.90%, macroscopic lung lesions -88.38%, M. hyopneumoniae DNA load in BAL fluid (D42) -67.28%). Further experiments raised under field conditions are needed to confirm these results and to assess the effect of the vaccines on performance parameters.


Assuntos
Vacinas Bacterianas/farmacologia , Mycoplasma hyopneumoniae/efeitos dos fármacos , Pneumonia Suína Micoplasmática/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Líquido da Lavagem Broncoalveolar/microbiologia , Pulmão/patologia , Pneumonia Suína Micoplasmática/microbiologia , Suínos
20.
Vaccines (Basel) ; 7(3)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443566

RESUMO

Subunit vaccines conferring complete protection against leptospirosis are not currently available. The interactions of factor H binding proteins (FHBPs) on pathogenic leptospires and host factor H are crucial for immune evasion by inhibition of complement-mediated killing. The inhibition of these interactions may be a potential strategy to clear leptospires in the host. This study aimed to evaluate a multisubunit vaccine composed of four known leptospiral FHBPs: LigA domain 7-13 (LigAc), LenA, LcpA, and Lsa23, for its protective efficacy in hamsters. The mono and multisubunit vaccines formulated with LMQ adjuvant, a combination of neutral liposome, monophosphoryl lipid A, and Quillaja saponaria fraction 21, induced high and comparable specific antibody (IgG) production against individual antigens. Hamsters immunized with the multisubunit vaccine showed 60% survival following the challenge by 20 LD50 of Leptospira interrogans serovar Pomona. No significant difference in survival rate and pathological findings of target organs was observed after vaccinations with multisubunit or mono-LigAc vaccines. However, the multisubunit vaccine significantly reduced leptospiral burden in surviving hamsters in comparison with the monosubunit vaccines. Therefore, the multisubunit vaccine conferred partial protection and reduced renal colonization against virulence Leptospira infection in hamsters. Our multisubunit formulation could represent a promising vaccine against leptospirosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...